
Toward Advocacy-Free Evaluation
of Packet Classification Algorithms

Haoyu Song, Member, IEEE, and Jonathan S. Turner, Fellow, IEEE

Abstract—Understanding the real performance of a proposed algorithm is a basic requirement for both algorithm designers and

implementers. However, this is sometimes difficult to achieve. Each new algorithm published is evaluated from different perspectives

and based on different assumptions. Without a common ground, it is almost impossible to compare different algorithms directly.

Choosing an incompetent algorithm for an application can incur significant cost. This is especially true for packet classification in

network routers, since packet classification is intrinsically a hard problem and all existing algorithms are based on some heuristics and

filter set characteristics. The performance of the packet classification subsystem is critical to the overall performance of the network

routers. Although numerous algorithms have been proposed so far, a benchmark that can give them consistent evaluation and reveal

their comparable performance is still missing. This paper summarizes our efforts toward improving this situation. First, we conduct a

high-level survey on the existing algorithms and extract some insights on the general design ideas. Second, we describe an open-

source platform dedicated for advocacy-free evaluation of packet classification algorithms. Many representative algorithms are actually

implemented under a set of uniform conditions and assumptions. The freely available implementations allow other researchers to

easily test them under different scenarios. We also enforce some consistent and fundamental criteria for the algorithm evaluation, so

that their performance and potentials are directly comparable, regardless of the actual implementation platforms. This project serves

dual purpose: It helps the researchers to accelerate the innovation in the area of packet classification algorithm development by

relieving them from the labor of replicating the previous work and by enabling them to quickly compare and evaluate algorithms.

Meanwhile, it also helps the system implementers to easily choose the capable algorithm for their particular applications. Aiming to

build an open-source library, we encourage external contributions of new algorithm implementations and evaluations under the same

framework. We believe the practice will benefit the research and design community as a whole.

Index Terms—Packet classification, algorithm evaluation.

Ç

1 INTRODUCTION

PACKET classification enables network routers to provide
advanced network services in addition to the basic

packet forwarding, such as network security, policy-based
routing, and quality of service (QoS) assurance. There is
increasing industrial and academic interest in high-
performance algorithms and systems for packet classifica-
tion. On the one hand, network security and QoS have
become the driving factors requiring large-scale packet
classification. Currently, the largest packet filter sets in use
contain thousands of filters and each filter involves five or
more packet header fields. Tens of thousands of filters in a
filter set are expected in the near future. On the other
hand, increasing network traffic poses greater challenges
than ever for the application of large-scale packet
classification. Today, OC-192 and 10 GbE (10 Gbps) line
speeds are common in edge networks, while the use of
OC-768 (40 Gbps) and 100 GbE (100 Gbps) line speeds
starts to emerge in core networks. A fully loaded OC-192
line can see as many as 30 million packets in a second,

leaving only 32 ns to classify a packet. This daunting task
is even more challenging when higher line speeds are
considered. As a result, packet classification is still an
open problem demanding continuing investigations.

The function of packet classification is to match packet
headers against a set of predefined filters. The relevant
packet header fields usually include the source IP address,
the destination IP address, the transport layer protocol, the
source port, and the destination port. Other header fields
(e.g., the MAC layer header, the IP class of service, and the
TCP flags) can also be included. Formally, a filter set consists
of a finite set of n filters: R1; R2 . . .Rn. Each filter is a
combination of k header field specifications: H1; H2 . . .Hk.
Each header field specifies one of four types of matches: exact
match, prefix match, range match, or masked-bitmap match.
A packet P is said to match a filterRi if and only if its header
fields, H1; H2 . . .Hk, match the corresponding fields in Ri as
specified. Each filter Ri has an associated action Ai that
determines how a matching packet P should be handled.
Since filters can overlap, it is possible for a packet to match
multiple filters. To resolve the ambiguity, each filter is
assigned a priority. For a packet, the filter with the highest
priority among all the matching filters is chosen as the best
matching filter. Usually, a filter’s priority is implied by its
position in the ordered filter set: the earlier it appears, the
higher its priority is. In case the application requires finding
all the matching filters, the order loses its significance.

The most compact storage for a filter set (i.e.,OðnÞ storage
forn filters) requires the linear search for packet classification.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 5, MAY 2011 723

. H. Song is with the Bell Labs, Alcatel-Lucent, HOH R-231, 791 Holmdel-
Keyport Rd., Holmdel, NJ 07733. E-mail: haoyu.song@alcatel-lucent.com.

. J.S. Turner is with the Department of Computer Science and Engineering,
Washington University in St. Louis, Campus Box 1045, 1 Brookings Dr.
St. Louis, MO 63130. E-mail: jst@arl.wustl.edu.

Manuscript received 3 Apr. 2009; revised 10 Sept. 2009; accepted 16 Dec.
2009; published online 6 Dec. 2010.
Recommended for acceptance by V. Leung.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2009-04-0143.
Digital Object Identifier no. 10.1109/TC.2010.252.

0018-9340/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Although simple, the scheme can be prohibitively slow even
for moderate-sized filter sets. In most applications, more
sophisticated algorithms or Ternary Content Addressable
Memory (TCAM) hardware must be used to accelerate the
lookup speed. Each approach has its own advantages and
disadvantages in terms of throughput, cost, power dissipa-
tion, ease of implementation, and scalability. Hybrid archi-
tectures that leverage these two approaches are also possible.

In Section 2, we briefly survey the existing algorithms
from a very high-level perspective, trying to capture the
basic ideas and the inherent links between these algorithms.
By studying these algorithms, we found, as a common
theme, a better algorithm can often be obtained by relaxing
the artificial constraints or by introducing extra degrees of
freedom. The literature survey also reveals a fact that the
status quo of algorithm evaluation is far from satisfactory.
The research community urgently needs more systematic
and consistent evaluations for existing algorithms to enable
comprehensive and unbiased performance comparison. It is
ideal to set up a benchmark and a common framework for
impartial algorithm evaluation. As an effort toward this
direction, this paper summarizes our project, in which we
propose several solid criteria as key performance indicators,
provide common filter sets with different characteristics,
implement many representative algorithms, and evaluate
them under the fundamental and consistent criteria. We
describe the project details in Sections 3 and 4. An example
is presented in Section 5. Finally, we summarize our
contributions and discuss the future work in Section 6.

2 HIGH-LEVEL REVIEW

As mentioned before, packet classification problem can be
solved by either algorithms or TCAM hardware.

2.1 Algorithmic Solutions

The algorithmic solutions use commodity memory compo-
nents (SRAM or DRAM) as the storage media for the
algorithm data structure. As a general design rule, an
algorithm always seeks to maximize the throughput and
minimize the storage.

We can map the packet classification problem to the
point location problem in a multidimensional space, where
each relevant header field is treated as a dimension. In this
space, each filter defines a hyper-cube and a packet
corresponds to a point. The goal of packet classification is
to determine the highest priority hyper-cube that covers a
given point. Point location problem is a classical and
fundamental topic in computational geometry. It has proven
to be difficult with poor worst-case bound [1]. Assume there
are n filters and F dimensions. It was showed that, in order
to achieve OðlognÞ lookup time, the required storage can be
as large as OðnF Þ; on the other extreme, if the storage is
limited to OðnÞ, a lookup may take OðlogF�1 nÞ time to
finish. Both cases are unacceptable in practice. Fortunately,
the real filter sets often exhibit some characteristics that
allow the filters to be organized in more efficient data
structures and allow the packets to be classified much faster,
using some heuristics.

2.2 Insights on Packet Classification Algorithms

An excellent survey of the art of packet classification
techniques can be found in [2]. In this section, we identify

certain high-level characteristics of the algorithmic ap-
proaches, with the objective of developing insights that can
guide future algorithm improvements and developments.

2.2.1 One Theme—Space and Time Tradeoff

The well-designed algorithms exhibit a clear tradeoff
between storage and throughput. Algorithms without
tunable parameters often perform poorly. For example,
the naive form of the cross-producting algorithm [3] suffers
from poor storage efficiency; so it fails to scale to even
moderate-sized filter sets. In contrast, the Recursive Flow
Classification (RFC) algorithm [4], a variation of the cross-
producting algorithm in essence, trades off the throughput
in order to reduce the storage to some extent. While still
maintaining the high throughput, the storage is signifi-
cantly reduced. However, for larger filter sets, the storage
efficiency of RFC remains low. This suggests additional
tradeoffs need to be realized to obtain better performance.

2.2.2 Two Strategies—Cutting and Projecting

The geometric view of packet classification exposes some
basic ideas on how to construct the data structures and
how to represent packet filters. In the geometric view,
many algorithms adopt the strategy of cutting or project-
ing in the multidimensional space to preprocess the filter
sets. Fig. 1 illustrates both strategies on a 2D plane. The
cutting strategy cuts a space region into smaller sub-
regions at selected vantage points. Each subregion, there-
fore, contains fewer hyper-cubes (note that some hyper-
cubes are divided into multiple subregions which they
overlap). This process recursively narrows down the
search scope.

The second strategy projects the hyper-cubes to each
dimensional axis. Two adjacent projecting points on an axis
define an elementary interval that is fully covered by a
unique subset of the hyper-cubes (filters). Identifying the
elementary intervals that a packet belongs to helps to
narrow down the search scope too.

Projecting has a finer granularity than cutting, so it can
differentiate the filters better; however, locating an elemen-
tary interval from projecting is more difficult than locating a
subregion from cutting.

The decision tree-based algorithms usually apply the
cutting strategy and the decomposition-based algorithms
often apply the projecting strategy.

724 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 5, MAY 2011

Fig. 1. (a) Cutting and (b) Projecting.

2.2.3 Three Techniques—Splitting, Intersecting, and

Grouping

The goal of packet classification is to find the best matching
filter for a given packet header. The initial filter set is too
large to be handled efficiently under limited storage or time,
so the basic strategy is nothing more than “divide and
conquer.” The filter set is partitioned and regrouped, so that
a packet can quickly identify a reduced filter set that
includes the matching filter. The filter set reduction is
achieved by “eliminating” the filters that are not needed for
finding the final match.

The first concrete technique is filter set splitting. It splits
the filter set into some smaller subsets based on the value of
a few carefully selected header bits. Some other header bits
are then used to continue splitting each subset. A decision
tree is formed from this recursive process. Algorithms using
this approach include Woo’s modular packet classification
[5], Hierarchical Intelligent Cuttings (HiCuts) [6], and
Multidimensional Cuttings (HyperCuts) [7].

The second technique is filter set intersecting. The key idea
of this technique is that it is easier to match a partial filter than
to match the entire filter all at once. If we split the packet
header into a set of substrings, then each substring can match
a subset of filters. The intersection of these subsets is exactly
the filters matching the entire packet header. Intersection can
be implemented with different tradeoffs of storage and
throughput. For example, we can intersect all subsets
obtained from the substring lookups in a single step. The
Bit Vector (BV) algorithm [8] and the Aggregated Bit Vector
(ABV) algorithm [9] explicitly represent the subset of filters
for each partial match by using bit vectors. In contrast, the
cross-producting algorithm [3] implicitly encodes the subsets
of filters into indices that are used to form the keys to the
cross-product table. These algorithms are very fast and their
throughput mainly depends on the speed of partial header
lookups; however, they can consume excessive amounts of
memory. On the contrary, the RFC algorithm [4] and the
Distributed Cross-producting of Field Labels (DCFL) algo-
rithm [10] provide a much nicer tradeoff of storage and
throughput by recursively performing parallel set intersec-
tions in multiple steps. The Fat Inverted Segment Trees (FIST)
algorithm [11] uses a similar approach but performs the
intersections in sequence.

The partial header lookup can be done using different
methods. The fastest method is to use a direct lookup table,
yet it also consumes the most storage. Instead, we can use any
well-established single-field lookup techniques, such as
binary search and longest prefix matching [12], [13], [14], [15].

The last and least used technique is filter set grouping.
Filters in a set are regrouped into disjoint subsets according
to certain common features. Lookups can be performed in
each of these smaller subsets in parallel. The best match is
determined from the results of all the lookups. Tuple Space
Search (TSS) [16], in which filters are grouped based on a
tuple specification, belongs to this category. Lookups in
each tuple can be conducted through a simple hash table.
The 2D Compressed Tuple Space Search algorithm [17] also
uses this basic technique.

Each of these techniques has its own limitations. It
appears that in order to achieve the consistently good

performance, the algorithm designer needs to combine the
best characteristics of different approaches and to make
good use of the time-space tradeoff. While attempting to find
new algorithms from totally different perspectives seems
unlikely, a systematic analysis of the existing algorithms can
lead to significant performance improvements. Here, we
discuss two possible research directions briefly.

One problem with filter set splitting is that some filters are
too similar to be efficiently separated. But one can use
filter set grouping to group the filters based on some sort of
“similarity” measurement, so that the filters in a single
subset exhibit the maximum dissimilarity. Now applying
filter set splitting to each subset can be more efficient.

The problem of filter set intersecting is its excessive memory
consumption, which is partially due to a large number of
elementary intervals [11] or equivalence classes [4]. We can
reduce the number by aggregating the elementary intervals.
This coarser granularity leads to much smaller cross-product
tables. It can also speed up the single field lookups at the cost
of a small linear search in the final intersection step. For
example, in the RFC algorithm [4], the first-level lookup
tables take very large storage space. By slightly sacrificing the
throughput, one can construct a more efficient data structure
to reduce the table size significantly.

To summarize, there are still plenty of opportunities to
improve the algorithm performance once the existing
algorithms are fully understood.

2.3 TCAM Solution

Ternary Content Addressable Memory chips (TCAMs) are
widely deployed in high-end network routers for packet
classification because of their unmatched lookup through-
put. A TCAM chip is a special memory device, which can
store ternary bit strings and perform parallel searches on all
of its entries simultaneously. In TCAMs, the packet filters are
represented as ternary bit strings and are stored in decreas-
ing priority order. Given a packet header, the search for the
best matching filter is performed on all the entries in parallel.
The index of the first matching filter is then used as the key to
access a table to retrieve the associated data for the matching
filter. This elegant architecture allows packets to be classified
very fast. A commercial TCAM chip can store more than
100K ternary filters, large enough even for the largest filter
set applied today. It can classify 250+ million packets per
second, exceeding the throughput demands of all the
existing networks today [18]. The room for algorithmic
solutions to compete with TCAMs seems very narrow.

While TCAMs remain the most popular choice for high
performance packet classification in network routers, the
research on algorithmic alternatives for packet classification
is still going on because of the following drawbacks of
TCAM devices:

. Low density and high cost. A TCAM chip uses 16
transistors to store a bit, while an SRAM chip uses
just six and a DRAM chips uses just 1. Consequently,
the storage density of a TCAM chip is significantly
lower than that of commodity memory chips. In
addition, the relatively small market for TCAMs
makes them very expensive: The cost per bit of
TCAMs is roughly 20 times more than that of SRAMs
and hundreds of times more than that of DRAMs.

SONG AND TURNER: TOWARD ADVOCACY-FREE EVALUATION OF PACKET CLASSIFICATION ALGORITHMS 725

. High power consumption. Because TCAMs search all
entries in parallel for every packet, power consump-
tion is a big issue. Twenty-five Watts is a fairly
typical power budget for a TCAM device in a high
performance application. Modern TCAMs allow the
entries to be grouped into segments that can be
selectively powered up and searched in order to
reduce the power consumption. When the filters are
partitioned into the segments appropriately, the
power consumption can be significantly reduced
[19], [20], [21]. However, these hybrid solutions
actually lower the system throughput and impair the
generality of TCAMs.

. Poor arbitrary range support. TCAMs can only search
on ternary bit strings. This is not ideal for packet
filters that include arbitrary ranges specifications on
some fields. The easiest way to solve this problem is to
convert each filter with range specifications into a set
of filters defined by ternary bit strings only (i.e., each
range can be converted to a series of nonoverlapping
prefixes). Unfortunately, this conversion can lead to
significant space expansion. An original filter can
become as many as 900 expanded filters in the worst
case [20]. This inefficiency has motivated the devel-
opment of new algorithms that combine single field
searches with encoded range values [22], [23], [24]
and proposals for direct hardware support for range
lookups [20]. Again, these hybrid solutions tend to
lower the system throughput and impair the general-
ity of TCAMs.

. Poor multiple-match support. Many recent network
security applications, such as network intrusion
detection and prevention, require all the matching
filters to be reported rather than the highest-priority
matching filter. However, the conventional TCAMs
can only output the matching filter with the smallest
index. It is likely that the future TCAMs, driven by
new application requirements, will be designed to
support multiple matches. Currently, the temporary
remedies dealing with this issue are discussed in
[25], [26], [27], [23]. In contrast, almost all the
algorithmic solutions naturally support multiple-
match applications.

Our research focuses primarily on the algorithmic
solutions for packet classification, aiming to promote better
design and evaluation standards for packet classification
systems and to accelerate the innovation process in this area
by providing an open-source platform.

3 CHALLENGES

Although many packet classification algorithms and archi-
tectures have been proposed and the research in this area is
still active, researchers and technology adopters find it
difficult to choose an appropriate algorithm for a particular
application and to evaluate new algorithms consistently
and objectively. Before exploring new possibilities, it is
imperative to understand the existing algorithms under
uniform test conditions and a common set of benchmark
criteria. Unfortunately, there is no such a platform available
today, and all we can do is to read each individual paper.
While this step is necessary, we often face the following
challenges during this process:

3.1 Incommensurable Evaluation Results

First, the performance evaluations by different authors are
not based on the same filter sets. This is partially because the
researchers have limited accessibility to real-world filter sets.
Sometimes they have to use randomly generated filter sets
for evaluations. However, the performance of packet
classification algorithms is very sensitive to the structure of
the filter sets. Second, the performance evaluations are not
based on the common implementation assumption and do
not share a common implementation model. Some algo-
rithms assume a software-based implementation and the
others assume a hardware-based implementation. The
different assumptions on implementation architectures and
platforms can lead to very different performance evaluation
results. Third, there is an absence of widely accepted tools,
benchmarks, and metrics for packet classification algorithm
evaluation. Different people have their own understanding
and selection of the evaluation criteria. Some criteria are
idealistic and make it difficult to determine the actual
performance one might expect in practice.

3.2 Irreproducible Implementations and Evaluation
Results

Researchers often fail to provide enough details to allow
readers to exactly reproduce the work reported in their
research papers. Either some key points of the algorithm
description are missing or the test conditions, such as
parameter settings and the filter sets used, are undisclosed.
These situations cause confusion and create unnecessary
hurdles for others trying to understand the algorithms and
to advance the research. Even if enough details can be
acquired from the publications, reproducing the previous
work can still be a time-consuming task, impeding the
speed of innovation.

3.3 Incomplete Evaluation and Unconvincing
Results

The packet classification algorithms often involve some
tradeoffs, heuristics, and optimizations. The tunable para-
meters may have subtle effects on algorithm performance. It
is, therefore, important to isolate them and evaluate their
behavior carefully in order to clarify their impact on the
algorithm performance. However, some evaluations fail to
identify the performance impact of individual parameters.
The incomplete evaluation hampers the implementer’s
confidence to adopt the algorithm and also makes the
thorough and fair comparisons difficult.

3.4 Inadequate Insights

The research papers discussing new algorithms often focus
on the algorithm details. It is up to the readers to figure out
the high-level insights that reveal the inherent and intrinsic
principles underlying the algorithms. Deeper understand-
ing of the problem is needed to enable more effective
algorithm design efforts.

Having listed these challenges, we intend to improve
the situation by setting up a platform accessible by all
researchers and implementers.

4 OUR APPROACH

Ideally, the evaluation should cover many aspects of the
algortihm, including the criteria of throughput, storage,

726 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 5, MAY 2011

incremental update support, preprocessing time, scalability
to the size of filter sets, adaptability to the structure of filter
sets, implementation cost, and power dissipation. More
important, all the evaluation results should be normalized
in a directly comparable way. It is understandable that in
different applications some performance criteria may be
more critical than the others, but the evaluation itself should
provide information without preference and let readers
make their own judgments. While asymptotic analysis of
timing and storage complexity is a useful metric, the
evaluation should not be limited to it. This is because
packet classification algorithms are mostly based on
heuristics. Even for a same algorithm, different filter sets
with different structures and sizes tend to give very
different results. The performance of an algorithm on real
filter sets is the decisive factor in any realistic evaluation to
deliver useful information.

Aiming to eliminate the inconsistency in the algorithm
evaluations for packet classification, we establish a standard
procedure of algorithm description and evaluation. In
particular, we provide the research community the objec-
tive and “advocacy-free” evaluation for a suite of repre-
sentative packet classification algorithms. A summary of
our approach is as follows:

4.1 Documenting the Method

First, we provide a complete description of the key data
structures and all the tunable parameters used in the
algorithm. Second, we provide a detailed description of the
algorithm preprocessing and lookup process along with
step-by-step illustrations using an example. Third, we
provide the source code for an actual implementation.

After carefully considering the mostly used application
scenarios for packet classification algorithms, we assume
that a simple hardware-based model based on ASICs,
FPGAs, or Network Processors is used in our implementa-
tion, which includes one or multiple on-chip lookup engines
or threads, a common memory interface, and commodity off-
chip memory chips, as shown in Fig. 2. All data structures
are stored in the off-chip memory. The lookup for one packet
is conducted by a sequence of dependent memory accesses
initiated from one of the search engines. The memory
bandwidth is shared by multiple independent lookup
engines (hardware blocks or software threads). We assume
a perfect sharing scheme, so no memory bandwidth is
wasted.

The on-chip resource is consumed by the hardware logic
to implement the search engines and some other facilitated
circuits including the packet dispatcher and the memory
interface. Given the current hardware technology, this part

is considered very low cost. A 10 mm� 10 mm die at the
standard 65 nm technology offers more than 100 million
gates, while a search engine consumes no more than a few
thousand gates on the average (Once the data structure is
set up, the actual searches are done through a series of very
simple operations, such as constructing the search key and
accessing the data structure). Memory incurs the most cost
of the packet classification system. Moreover, since we can
afford multiple parallel search engines at low cost, the
throughput performance bottleneck lies on the memory
interface which, in turn, is determined by the available
memory technology. Memory also consumes the most of
the power in the system. For these reasons, we only
evaluate the memory consumption, which incurs the most
cost, and the memory bandwidth consumption, which
determines the overall system throughput while ignoring
the cost and impact of the other components in the system.
We believe this simplified model captures the essence of the
performance evaluation for packet classification algorithms.

We also try to categorize the algorithms based on their
high-level ideas and provide insights to help to improve the
existing algorithms or design new algorithms.

4.2 Documenting the Filter Sets

Since we cannot access many operational filter sets in
production networks, and even if we can, we are not
allowed to publish them due to privacy and security
concerns, we have to resort to the synthetic filter set. The
open-source ClassBench [28] is used to generate several
synthetic filter sets with different scales and structures. We
provide the parameters used for the filter set generation. We
also generate a packet header trace using ClassBench for each
filter set. The packet header traces are used to verify the
algorithm implementation and to evaluate the algorithm
performance. The size of each trace is about 10 times larger
than the corresponding filter set.

We also provide the original filter sets that are used as
seeds for reference. The statistics files extracted from
these original filter sets can be downloaded from the
ClassBench website.

All evaluations we have conducted use the same filter
sets. This is the first step to guarantee the algorithm
commensurability.

4.3 Essential Evaluation Metrics

Based on our memory-centric model, the key performance
measure can be directly derived and inferred from the
algorithm data structure built for a particular filter set.

We measure the storage consumption of an algorithm
using the average number of bytes consumed per filter. This
measurement is essential to understand the overall memory
efficiency. It avoids two main drawbacks of the previous
practices: 1) one algorithm may involve multiple data
structures and tables, but the evaluation fails to cover all of
them; 2) only the overall memory consumption is reported,
but the size of the filter set applied is unknown.

We can measure the throughput of an algorithm using
the memory bandwidth consumption: the number of bytes per
memory access and the number of dependent memory accesses per
packet lookup. However, to make the evaluation results
directly comparable, we actually use the product of the
above two numbers as the measurement of the bandwidth

SONG AND TURNER: TOWARD ADVOCACY-FREE EVALUATION OF PACKET CLASSIFICATION ALGORITHMS 727

Fig. 2. The model for the implementation of packet classification
algorithms.

consumption. This measurement is essential to understand
the achievable system throughput. It eliminates the diffi-
culties to directly compare algorithms. For example, some
algorithms assume a parallel table lookup architecture (e.g.,
RFC [4]) and some others assume a sequential table lookup
architecture (e.g., HyperCuts [7]), some algorithms use very
wide lookup words (e.g., BV [8]) and some others use
narrow lookup words (e.g., Tuple Space Search [16]). Our
measurement reflects the actual throughput regardless of
these differences. The memory bandwidth consumption is
evaluated in both the worst case and the average case.

We use three figures like those shown in Fig. 3 to
present the results. Given these measurements, the overall
storage is simply the product of the memory consumption
per filter and the number of filters. The overall through-
put can be calculated by simply dividing the total memory
bandwidth by the memory bandwidth consumed per
packet lookup. Some other related metrics that readers
might be interested in (e.g., the tree depth in the decision
tree-based algorithms), can be easily obtained by running
the algorithm implementations.

Without an accurate power model and the real imple-
mentation, it is very difficult to measure the absolute power
consumption of an algorithm. Fortunately, since the
memory consumes the most of the power, once we know
the memory and the memory bandwidth consumption of an
algorithm, the relative power consumption can be derived.

Another important aspect of the algorithm evaluation is
about the cost and speed of filter set preprocessing and
incremental updates. In our evaluations, we found that the
preprocessing time varies drastically, depending on the filter
set size and structure, the design parameters, and the
performance target. The time can range from milliseconds
to even minutes. With the algorithm implementations
provided, users can easily test the preprocessing time based
on their filter sets. The more important issue is about the
incremental updates. Some decomposition-based algo-
rithms, such as RFC [4] and BV [8] do not support
incremental updates in most cases. This means they only
work on the static filter sets. Anytime a new filter needs to be
added (or an old filter needs to be removed), the data
structures of these algorithms have to be rebuilt from scratch.
On the other hand, the decision tree-based algorithms, such
as HiCuts [6] and HyperCuts [7], support incremental
updates. However, the resulting data structure will become
suboptimal after updates, which will eventually lead to
performance deterioration. It is necessary to rebuild the data
structure once the performance becomes unacceptable. The

incremental update speed can also be derived from the
implementations provided. Such information is clearly
documented, since it might be critical for some applications.

4.4 Sensitivity Study

We determine how each individual parameter influences the
overall performance quantitatively in our algorithm evalua-
tions. For each tunable parameter, we produce some figures
like that shown in Fig. 4. Each figure uses a differently scaled
filter set. The sensitivity study clarifies the issues often left
unresolved in the original papers. It also helps users to
determine the optimal design parameters for a given filter set.

The documentations of the algorithms and the evalua-
tion results are posted on a publicly accessible website:
www.arl.wustl.edu/~hs1/PClassEval.html.

Note that our reference implementations are only for the
purpose of simulation and evaluation; thus, the source code
is not optimized for software execution and the implemen-
tations do not directly map to either ASICs/FPGAs or
network processors. Our effort will help to understand
some representative algorithms better, to promote the
standard for impartial and consistent algorithm evalua-
tions, to ease the research curve, and to encourage external
contributions from the entire research community.

5 SUMMARY AND EXAMPLE ILLUSTRATED

5.1 Evaluated Algorithms

Six representative algorithms have been implemented and
evaluated. They are HiCuts [6], HyperCuts [7], Woo’s
Modular Packet Classification [5], RFC [4], BV [8], and the
Tuple Space Search algorithm [16]. These algorithms set up
the foundations of this field and cover all the basic
techniques, we have discussed in Section 2. New algorithms
mainly seek to improve these classical algorithms.

728 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 5, MAY 2011

Fig. 3. Presentation of evaluation results.

Fig. 4. Effect of parameter settings.

The difficulty we encountered during the algorithm
implementations is mainly due to the ambiguous and
incomplete algorithm descriptions in the original papers.
Since the algorithms depend heavily on heuristics and the
performance of the heuristics is very sensitive to the filter set
structure, some algorithms describe several possible im-
plementation options or just high-level guidelines for
implementations. Therefore, it is up to the users to determine
the appropriate implementation details for their applica-
tions; so several rounds of trial and error are needed. During
this course, we found that sometimes the details are hard to
determine; however, getting them right is crucial for the
overall performance.

When implementing the HiCuts algorithm [6], we were
troubled by the heuristics for choosing the dimension to cut.
Although four possible strategies are listed, it is unclear
which one is the most effective. Our experiments show that
this decision is crucial. Random choice may cause the
algorithm to degrade its performance significantly or even
to fail to work. For example, the option that choosing the
dimension that can maximize the entropy of filter distribu-
tion does not work in case all the remaining filters span the
entire region on some dimensions. No matter how many
cuts are performed on these dimensions, they always return
the maximum entropy. However, cutting on any of these
dimensions are useless for filter set separation. The only
effect is to duplicate the same set of filters into multiple
subregions. Similar issue happens in other algorithms such
as HyperCuts [7]. While the dimension choosing strategy is
clear in this algorithm, the decisions about the number of
cuts and their distribution among the chosen dimensions
are open-ended. In RFC [4], the issue on how exactly the
reduction tree should be shaped is left undetermined.
However, a poor decision can negatively impact the
memory efficiency.

The ambiguity in algorithm details makes the algorithm
evaluation and comparison difficult. In our implementa-
tion, we allow users to freely configure the parameters. To
compare the algorithms under a particular filter set, we
choose the configurations that lead to the best overall
performance.

5.2 Filter Sets

In our evaluations, we use three parameter files to
generate the synthetic filter sets with variable sizes of
100 to 10K filters. The parameter files are:

acl1: Extracted from a real-world Access Control List
(ACL) filter set with 733 filters. In this filter set, the source
and destination IP prefix specifications are quite specific.
The destination port specification can be exact value (in
most cases) arbitrary range, or wild-card. All the source
port specifications are wild-card, so essentially the filters
have only four dimensions.

ipc1: Extracted form a real-world IP Chain (IPC) filter set
with 1,702 filters. The structure of this filter set is similar to
that of the ACL filter set, except that the source ports also
contain exact values or arbitrary range specifications.

fw1: Extracted from a real-world firewall filter set with
283 filters. In this filter set, a large number of filters contain
the wild-card specification in one or more fields.

The detailed characteristics of these parameter files can
be found in [29].

5.3 Example Illustrated—The HiCuts Algorithm

As an example to show what we have achieved, we provide
the documenting and evaluation results of HiCuts [6].
Readers can access the project website for more information
and the evaluation results of other algorithms.

HiCuts is the first decision tree-based packet classifica-
tion algorithm. It takes the geometric view of the packet
classification problem. We consider a k-dimensional space,
where k is the number of header fields involved in packet
filters. With such an abstraction, each filter defines a hyper
cube and each packet header defines a point in this
k-dimensional space. The decision-tree construction algo-
rithm recursively cuts the space into smaller subregions.
Only one dimension is cut at each step. Each subregion ends
up containing fewer hyper cubes. The cutting continues
until each subregion contains few enough filters that allow
a low cost linear search to find the best matching filter.

The lookup algorithm is straightforward. Based on the
value of the packet header, the algorithm follows the cutting
sequence to locate the target subregion (i.e., a leaf node in
the decision tree) and then, performs a linear search on the
hyper-cubes that overlap this subregion.

Fig. 5 illustrates the decision-tree construction for a 2D
filter set. On the plane are five rectangles. Each rectangle
represents a filter. At the first step, we cut along the x-axis to
generate four subregions. At the following steps, we choose
two of these subregions to cut along the y-axis and x-axis,
respectively. Now each subregion overlaps � 2 rectangles.
If we decide it is affordable to do a linear search on at
most two filters, we can stop cutting the space further. The
resulting decision tree is also shown in Fig. 5.

The number of decision tree nodes and the number of
stored filters (filters can be duplicated if crossing the
cutting boundaries) determine the storage of the algorithm
data structure. The depth of the decision tree and the
number of filters in the leaf nodes determine the worst-
case lookup throughput. It is difficult to find the globally

SONG AND TURNER: TOWARD ADVOCACY-FREE EVALUATION OF PACKET CLASSIFICATION ALGORITHMS 729

Fig. 5. HiCuts algorithm illustration.

optimal decision tree, so in practice the algorithm uses

some heuristics to make optimal local decisions and to

trade off storage and throughput. Gupta and McKeown [6]

introduce the following configurable parameters to control

the tradeoff.

5.3.1 Configurable Parameters

The number of cuts at each node. Intuitively, the more cuts at

each node are conducted, the fatter and shorter the

resulting decision tree will become. However, the storage

penalty due to the high degree of the decision tree can

easily overwhelm the throughput gain. Therefore, we

choose a suitable number of cuts np at each internal

decision tree node r. np is dynamically determined by the

local cutting situation and a global configurable space

measure factor, spmf. We choose the largest possible np as

long as the following inequation is satisfied and it does not

exceed the design limitation:

spmf�ð# filters at rÞ
�
X
ð# filters at each child of rÞ þ np:

For the convenience of implementation, the chosen value

of np is always the power of two. Different configurations of

spmf need to be tested to determine the best one.
The dimension chosen to cut at each node. In addition to the

number of cuts, the dimension to cut at each internal

decision tree node r is also critical to the algorithm

performance. The algorithm provides four options in this

regard. No one is consistently better than the others for all

filter sets. Their effectiveness can only be tested through

experiments. First, for each of the dimensions, we calculate

the largest number of cuts and record the statistics of filter

distribution in the child nodes, then we test the following

four options to choose the best one:

1. option 0: Find the largest number of filters, ni, in a
child node for each field. Choose the dimension that
gives the smallest ni.

2. option 1: Assume node r contains n filters and a child
node of r contains ni filters. Let ni=n be a probability
distribution of np elements. Choose the dimension
that gives the largest entropy of the distribution.

3. option 2: Choose the dimension that results in the
smallest

X
filters at each child of rþ np:

4. option 3: Choose the dimension that has the largest
number of distinct range specifications.

The bucket size at leaf nodes. The bucket size is defined as the

maximum number of filters allowed in a leaf node. It is used to

determine as to when we can terminate the decision tree

construction. A larger bucket size can help to reduce the size

and depth of a decision tree, but it can induce a longer linear

search time. A smaller bucket size has the counter-effects.

Experiments are needed to determine the appropriate bucket

size for the best tradeoff of storage and throughput.

5.3.2 Algorithm Optimizations

Several algorithm optimizations were introduced in [6]:
Child node reuse. After a number of cuts are performed

along a dimension, many child nodes may contain an
identical set of filters. In such a case, we can avoid storing
these child nodes separately. Instead, we use a pointer to
point to a common child node, which is shared by all such
child nodes. This optimization has two implications. First, a
pointer must be maintained for each potential child node.
Second, each node must keep its region boundary explicitly.
Both can result in a larger node size. Therefore, the
optimization must be carefully evaluated to see if it can
actually lead to a more compact storage. A misuse can incur
the storage penalty instead.

In Fig. 6a, the first two subregions r0 and r1 have the same
set of filters, fR1; R2g, so only one child node is generated.

Redundancy elimination. After a sequence of cuttings are
performed, the portion of a hypercube in a subregion might
be fully covered by another hypercube with a higher priority.
The corresponding filter at this decision tree node is
therefore redundant, so it can be removed to save the storage.

In Fig. 6b, if R1’s priority is higher than R3’s, then in the
subregion r1; R3 becomes redundant, so it can be removed.
However, R1 and R3 should coexist in the subregion r0,
since they are only partially overlapped.

5.3.3 Storage Efficiency and Scalability of Storage and

Throughput

In our experiments, we set the bucket size to 16, the space
measure factor to two, and the dimension choosing option
to three. Fig. 7 shows the results. The algorithm consistently
demonstrates better performance and scalability on the
acl1 filter sets than on the other types of filter sets. The
fw1 filter sets result in the poorest overall performance.
When the number of filters exceeds 1K for fw1 or 5K for
ipc1, the storage becomes unacceptable, so the data points
are not shown in the figures.

5.3.4 Sensitivity Study

We use the filter sets acl1-10K, ipc1-1K, and fw1-100 to evaluate
the algorithm sensitivity to the configurable parameters.

Sensitivity to the space measure factor. In this simulation,
we set the bucket size to 16 and the dimension choosing
option to three. The results are shown in Fig. 8. A larger
space measure factor means larger storage and better
throughput. acl1-10K and ipc1-5K show the similar perfor-
mance while fw1-100 is much worse in terms of the storage,
even there are only about 100 filters in the filter set.

730 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 5, MAY 2011

Fig. 6. (a) Child node reuse optimization. (b) Redundancy elimination
optimization.

Sensitivity to the bucket size. In this simulation, we set the
space measure factor to two and the dimension choosing
option to three. The results are shown in Fig. 9. The storage
decreases monotonously as the bucket size increases.
Generally, a larger bucket size means a worse lookup
throughput but this does not always hold.

5.3.5 Preprocessing and Incremental Updates

The preprocessing time is collected on a PC with a 2.93 GHz
Intel Q6800 CPU and 3 GB RAM. Fig. 10a shows the
preprocessing time in seconds for different types of filter
sets and for different number of filters. In this simulation, the
bucket size is fixed to 16 and the dimension choosing option is
set to three. The time to process the firewall filter set increases
abruptly as the number of filters grows. Fig. 10b shows the
preprocessing time in seconds for the ACL filter sets with
different bucket size and different number of filters. Smaller
bucket size requires significantly longer time to process.

The HiCuts algorithm supports incremental updates to
some extent. To insert (or remove) a filter, we can just walk
the decision tree similar to the lookup process using the
filter specification. However, since the hyper cube specified
by a filter may overlap multiple subregions defined by the
decision tree leave nodes, the process requires to update all
the affected leave nodes. This can be time-consuming for
less-specified filters. Moreover, such updates lead to a
suboptimal decision tree with deteriorate performance. The

algorithm implementers need evaluate the impact of the

preprocessing and incremental update cost for their

particular applications.

5.4 Observations

The overall evaluation results are consistent with our

expectations. However, some interesting behaviors do stand

out, which are not discussed in the original papers.
First, the performance of packet classification algorithms

on the firewall filter sets is generally poor, even if the size is

just moderate. This is especially true for the decision tree-

based algorithms. For example, given a firewall filter set with

SONG AND TURNER: TOWARD ADVOCACY-FREE EVALUATION OF PACKET CLASSIFICATION ALGORITHMS 731

Fig. 7. HiCuts performance evaluation.

Fig. 8. Sensitivity to space measure factor.

Fig. 9. Sensitivity to bucket size.

Fig. 10. Preprocessing time.

only 100 filters, the HiCuts algorithm [6] uses more than
1,000 bytes to store a filter on the average and needs to access
about 500 bytes to classify a packet in the worst case. The
main reason is that each field of the filter tends to cover a
wide range of values. In consequence the filters are heavily
overlapped and less distinguishable. Fortunately, the num-
ber of unique ranges or prefixes on each field is not too large
so the decomposition-based algorithms, such as RFC [4] and
BV [8] work relatively better on this type of filter sets.

Second, although the decomposition-based algorithms
can be very fast, their memory efficiency is relatively poor.
We observe excessive memory consumption for some
moderate sized filter sets. For example, given an IPC filter
set with about 1,000 filters, the RFC algorithm [4] needs
40,000 bytes to store a filter on the average. The preproces-
sing algorithm can exhaust the system memory when
working on the filter sets with just a few thousands of filters.

Third, although the decision tree-based algorithms allow
a nice tradeoff between storage and throughput, the overall
performance is not very promising. More study needs to be
done in at least two areas: 1) find more systematical ways to
fine-tune the configurable parameters, and 2) find better
adaptive decision-tree construction procedures to fit the
target filter set structure.

5.5 Algorithm Comparisons

When our evaluation metrics are applied, comparing
different algorithms becomes straightforward. For example,
it was difficult to compare the HiCuts algorithm [6] and the
Tuple Space Search algorithm [16] before because they are
based on very different design paradigms. However, from
our evaluation results published on the website, www.
arl.wustl.edu~hs1/PClassEval.html, we can easily draw the
following conclusions quantitatively: 1) TSS is much more
memory efficient than HiCuts; while larger filter sets
typically result in worse storage efficiency for HiCuts, the
trend is opposite for TSS in many cases. 2) The worst-case
throughput and the average-case throughput of TSS are
very similar; while HiCuts’s worst-case throughput is worse
than TSS, its average-case throughput is better than TSS.
3) HiCuts handles the firewall filter set better than TSS in
terms of throughput. However, the storage of HiCuts does
not scale to large firewall filter sets. Based on these
observations, algorithm implementers can easily decide
the algorithm that best suits their specific applications.

6 CONCLUDING REMARKS

The project we described, focuses on the evaluation issues for
high performance packet classification algorithms, which are
needed to enable the routers, and switches to meet the QoS
and security challenges in high-speed environments.

We first summarize the previous work from a high-level
perspective and try to categorize the algorithms according
to their basic approaches. This method has a clear
advantage to help the researchers and designers to avoid
digging into the algorithm details and to gain a clear sight
of the big picture. Understanding the problem from a high-
level perspective also provides insights that can lead to
further improvements to the state of the art.

It is also important to understand the technical merit of
each algorithm. We are often in a situation to ask as to which
algorithm is indeed better from certain perspective, or if we
can use one for a particular application with reasonable
confidence. Unfortunately, such questions are difficult to
answer just based on the published papers. In this paper, we
describe an open-source project to mitigate this issue. Most of
the representative algorithms are actually implemented
based on the same model and assumptions. The freely
available implementations allow others to easily reuse them
for different purposes. We also enforce more consistent and
fundamental performance measurement criteria for algo-
rithm evaluation so that the algorithms can be directly
compared. This project relieves researchers and designers
from duplicating the previous work and helps them to
quickly evaluate algorithms for any applications. By keeping
this platform open, we also encourage external contributions
of new algorithm implementations and evaluations. We
hope they can be incrementally added to the library under
the same framework. We believe this project will benefit the
research and design community as a whole.

REFERENCES

[1] M. Overmars and A. van der Stappen, “Range Searching and
Point Location among Fat Objects,” J. Algorithms, vol. 21, no. 3,
pp. 629-656, 1996.

[2] D.E. Taylor, “Survey and Taxonomy of Packet Classification
Techniques,” Technical Report, WUCSE-2004, Washington Univ.,
2004.

[3] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
Scalable Layer Four Switching,” Proc. ACM SIGCOMM, 1998.

[4] P. Gupta and N. McKeown, “Packet Classification on Multiple
Fields,” Proc. ACM SIGCOMM, 1999.

[5] T.Y.C. Woo, “A Modular Approach to Packet Classification,” Proc.
IEEE INFOCOM, 2000.

[6] P. Gupta and N. McKeown, “Packet Classification Using
Hierarchical Intelligent Cuttings,” Proc. IEEE Symp. High Perfor-
mance Interconnects (HotI), 1999.

[7] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet
Classification Using Multidimensional Cutting,” Proc. ACM
SIGCOMM, 2003.

[8] T.V. Lakshman and D. Stiliadis, “High-Speed Policy-Based Packet
Forwarding Using Efficient Multi-Dimensional Range Matching,”
Proc. ACM SIGCOMM, 1998.

[9] F. Baboescu and G. Varghese, “Scalable Packet Classification,”
ACM SIGCOMM, 2001.

[10] D. Taylor and J. Turner, “Scalable Packet Classification Using
Distributed Crossproducting of Field Labels,” Proc. IEEE
INFOCOM, July 2005.

[11] A. Feldmann and S. Muthukrishnan, “Tradeoffs for Packet
Classification,” Proc. IEEE INFOCOM, 2000.

[12] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable
High Speed IP Routing Lookups,” Proc. ACM SIGCOMM, 1997.

[13] V. Srinivasan and G. Varghese, “Fast Address Lookups Using
Controlled Prefix Expansion,” ACM Trans. Computer Systems,
vol. 17, pp. 1-40, Feb. 1999.

[14] W. Eatherton, G. Varghese, and Z. Dittia, “Tree Bitmap: Hard-
ware/Software IP Lookups with Incremental Updates,” ACM
SIGCOMM Computer Comm. Rev., vol. 34, no. 2, pp. 97-122, Apr.
2004.

[15] H. Song, J. Turner, and J. Lockwood, “Shape Shifting Tries for
Faster IP Lookup,” Proc. IEEE Int’l Conf. Network Protocols
(ICNP ’05), 2005.

[16] V. Srinivasan, S. Suri, and G. Varghese, “Packet Classification
Using Tuple Space Search,” Proc. ACM SIGCOMM, citeseer.
ist.psu.edu/srinivasan99packet.html, 1999.

[17] H. Song, J. Turner, and S. Dharmapurikar, “Packet Classification
Using Coarse-Grained Tuple Spaces,” Proc. ACM/IEEE Symp.
Architecture for Networking and Comm. Systems (ANCS ’06), pp. 41-
50, 2006.

732 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 5, MAY 2011

[18] IDT Network Search Engines, http://www.idt.com/products,
2009.

[19] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power-Efficient
TCAMs for Forwarding Engines,” Proc. IEEE INFOCOM, 2003.

[20] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification
Using Extended TCAMs,” Proc. IEEE Int’l Conf. Network Protocols
(ICNP), 2003.

[21] K. Zheng, H. Che, Z. Wang, and B. Liu, “TCAM-Based Distributed
Parallel Packet Classification Algorithm with Range-Matching
Solutin,” Proc. IEEE INFOCOM, 2005.

[22] H. Liu, “Efficient Mapping of Range Classifier into Ternary-
CAM,” Proc. IEEE Symp. High Performance Interconnects (HotI),
Aug. 2002.

[23] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,
“Algorithms for Advanced Packet Classification with Ternary
CAMs,” ACM SIGCOMM, 2005.

[24] J. Lunteren and T. Engbersen, “Fast and Scalable Packet
Classification,” IEEE J. Selected Areas in Comm., vol. 21, no. 4,
pp. 560-571, May 2003.

[25] F. Yu and R.H. Katz, “Efficient Multi-Match Packet Classification
with TCAM,” Proc. Hot Interconnects, 2004.

[26] F. Yu, T. Lakshman, M.A. Motoyama, and R.H. Katz, “SSA: A
Power and Memory Efficient Scheme to Multi-Match Packet
Classification,” Proc. Symp. Architectures for Networking and Comm.
Systems, 2005.

[27] H. Song and J. Lockwood, “Efficient Packet Classification for
Network Intrusion Detection Using FPGA,” Proc. Int’l Symp. Field-
Programmable Gate Arrays (FPGA), 2005.

[28] D.E. Taylor and J.S. Turner, “Classbench: A Packet Classification
Benchmark,” Proc. IEEE INFOCOM, 2005.

[29] ClassBench, http://www.arl.wustl.edu/~det3/ClassBench, 2005.

Haoyu Song received the BE degree in
electronics engineering from Tsinghua Univer-
sity, in 1997, and the MS and DSc degrees in
computer engineering from Washington Univer-
sity in St. Louis, in 2003 and 2006, respectively.
He is currently a member of Technical Staff
researcher at Bell Labs, Alcatel-Lucent. From
2002 to 2006, he was a research assistant at
Applied Research Laboratory, Washington Uni-
versity. His research interests include network

virtualization and cloud computing, high performance networked
systems, algorithms for network packet processing and network
intrusion detection, and ASIC/FPGA design and verification. He has
published more than 20 peer-reviewed papers and has filed eight
patents for his work on network packet processing and network
virtualization. He is a member of the IEEE.

Jonathan S. Turner received the MS and PhD
degrees in computer science from the North-
western University, in 1979 and 1982, respec-
tively. He holds the Barbara and Jerome Cox
chair of Computer Science at Washington Uni-
versity, and also, he is the director of the Applied
Research Laboratory. His research focuses on
the design and analysis of high performance
networks, and he has led a series of major
systems projects over the years, that have

demonstrated important innovations in high performance switching,
scalable multicast, extensible routers, and network virtualization. He has
graduated 21 PhD students and has served as chair of the Department of
Computer Science and Engineering (1992-1997, 2007-2008). He was a
member of the Technical Staff at Bell Labs (1977-1983), where he
provided the technical leadership on an early project seeking to integrate
voice and data communication using packet switching. He was a
cofounder and the chief scientist of Growth Networks, a startup company
that developed scalable switching components for Internet routers and
ATM switches, before being acquired by Cisco Systems in early 2000. He
received the Koji Kobayashi Computers and Communications Award
from the IEEE, in 1994, and the IEEE Millenium Medal, in 2000. He has
been awarded 30 patents for his work on switching systems and has
many widely cited publications. He is a fellow of both the ACM and the
IEEE, a member of the National Academy of Engineering, and a member
of the board of the Computing Research Association.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SONG AND TURNER: TOWARD ADVOCACY-FREE EVALUATION OF PACKET CLASSIFICATION ALGORITHMS 733

